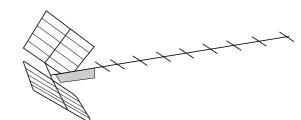
Ein SDR-Überblick – ganz ohne Hardware!

Hayati Aygün <h_ayguen@web.de>

Überblick

- KEINE Auflistung von SDR Hardware
- KEINE Auflistung von SDR Software
- Vergleich von herkömmlichem zu Software Definiertem Radio
- Ähnlichkeiten
- Unterschiede und Neue Möglichkeiten
- Grenzen

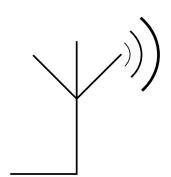


Software definiertes Radio?

- Missverständnis: Hardware = SDR
 - → Software = SDR, Hardware = Basis
- Starre Hardware kann nicht alle Betriebsarten wie (S)AM, FM, USB, LSB, CW, ..., RTTY, PSK31, ...
 - → Software für DigiModes
- Kaum Updates für DigiModes durch Hardware Hersteller
 - → Open-Source / Freeware / kommerzielle DigiMode Software

Antenne?

- Erste kritische Komponente
- Verluste NICHT kompensierbar


• Mit Rauschen zugeschüttetes Signal ist und bleibt verloren!

- Entfernung zu häuslichem Störnebel
- Antennenform
- Richtcharakteristik
- Aufbauhöhe

Hardware – auch für SDR (1)

- Antenne .. + korrekte Anpassung
- Vorverstärker Ausgleich der Kabeldämpfung

- Vorselektions Filter Vermeidung von Übersteuerung
- Empfangskonverter und Transverter
 Bsp. Bandpass + Herunter-Mischer: 70cm → 10m, 2m → 10m
 kaum Direkt-Abtaster für 2m, 70cm oder höher
- Hoch-Mischer / Up-Konverter:
 HF → VHF z.B. für RTL-Dongles
 LW (10 500 kHz) → 10 MHz

Hardware – auch für SDR (2)

- Verstärkungs/Gain und Dämpfungsstufen
- a) Zwei A/D Wandler:
 - → DC Gleichanteil in der Empfangsmitte (LO Frequenz)
 - → I/Q Imbalance → Geistersignale symmetrisch um LO günstigerer Aufbau, da Anti-Alias Problem an Soundkarte mit dessen Eingangs-Filtern weitergegeben wird
- b) Ein A/D Wandler:
 - → ggf. nachträgliche Umrechnung in I/Q
 - → DC irrelevant, da am äußersten Rand des Empfangsbereichs Alternativ reell an SW mit ZF Frequenz von z.B. 12 kHz

SDR Empfangskonzepte

A) Direkt-Abtaster

- Ein ADC mit 60 122 MHz bei 12 16 Bit
- FPGA Technologie: Kein DC, Keine Spiegelungen
- B) I/Q Abtaster mit 2 ADCs (analoge Quadratur-Mischung in 90°-Phase)
 - Spiegelungen, wenn I/Q Oszillator nicht exakt 90° (→ I/Q-Imbalance)
 - DC und Spiegel. durch Soundkarte, falls Abtastungen nicht synchron
 - Keine eigenen Filter notwendig → relativ günstig
- C) ZF-Empfänger Konzept "alter" DRM Empfänger mit 12 kHz ZF
 - Keine Spiegelungen, da kein I/Q

Gemeinsamkeit: Grobaufbau (1)

- (Impulse) Noise Blanker (NB)
- Automatic Frequency Control (AFC)
- Band / ZF Filter folgt ...
- Automatic Gain Control (AGC)
 Anstieg-, Abfall- und Haltezeit. Manuell (digital)
- Strength-Meter (S-Meter)
 abweichende Genauigkeit, Kalibrierung
- Rauschsperre / Squelch (SQ)
 basierend auf Empfangsleistung ..
 oder Audio Pegel .. oder SNR

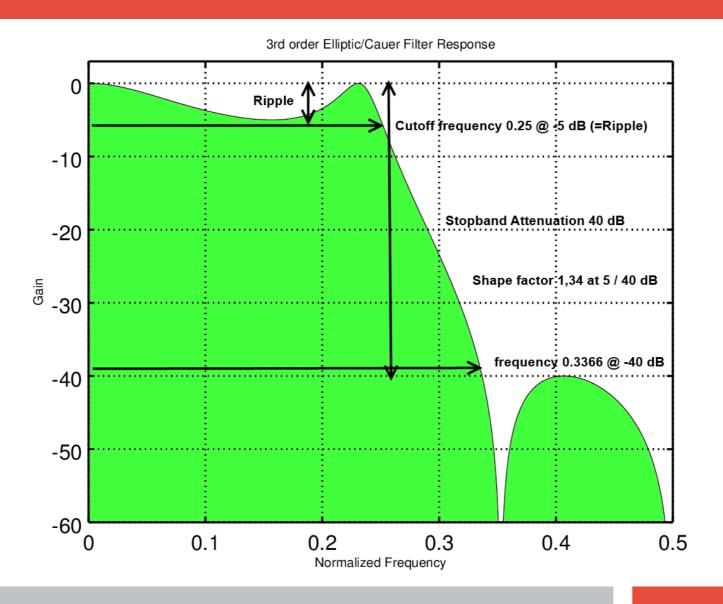
Gemeinsamkeit: Grobaufbau (2)

- Kerbfilter (Notch): mehrere manuell mit Mitte und Bandbreite automatisch
- Noise Reduction (NR)
 verschiedene Algorithmen
 bis hin zu "Sprachextraktor"
- Audio Equalizer (EQ)
 fürs persönliche Hörempfinden

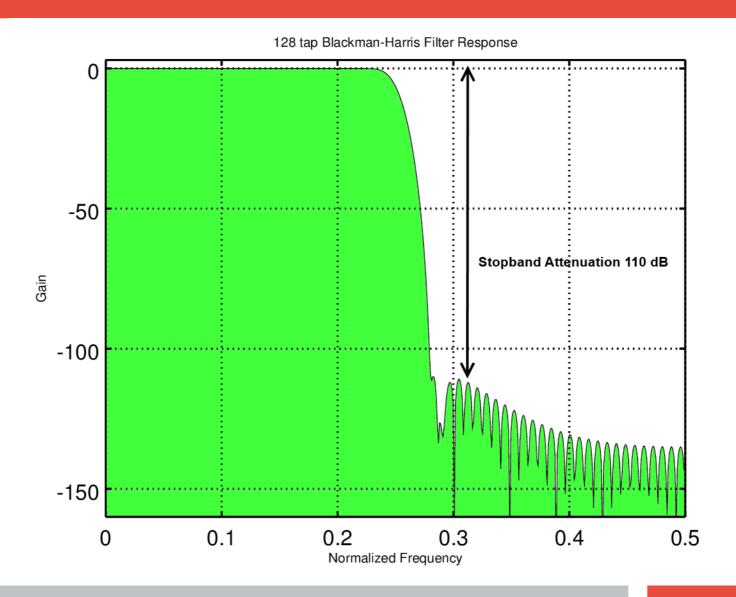
Band- und ZF Filter: IIR vs FIR

- Selektivität
- Flankensteilheit Shape-Faktor
- Welligkeit (Ripple)
- Verzerrungen / frequenz-abhängige Laufzeit
- Dynamik. Siehe auch Sherwood-Engineering Liste: http://www.sherweng.com/table.html

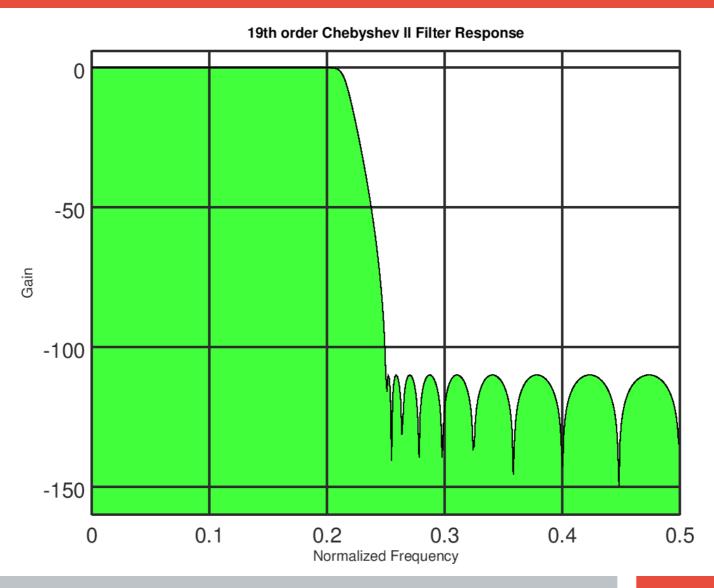
Unterschied: Filterentwurf / Design

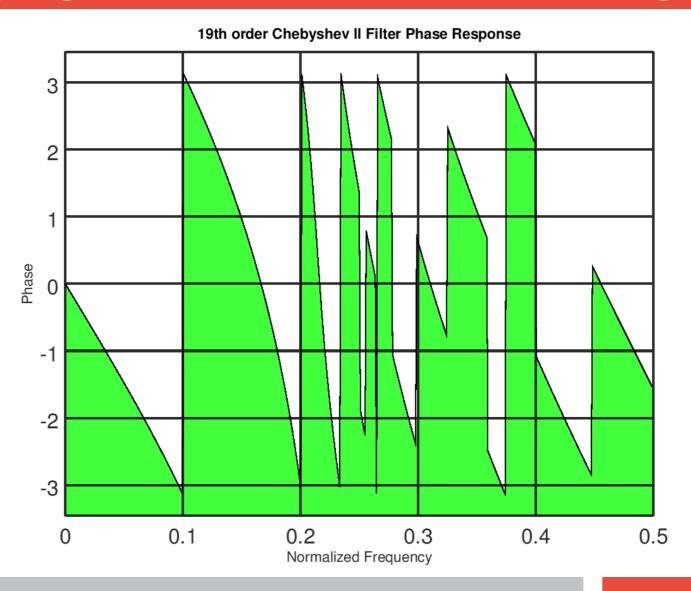

Analog

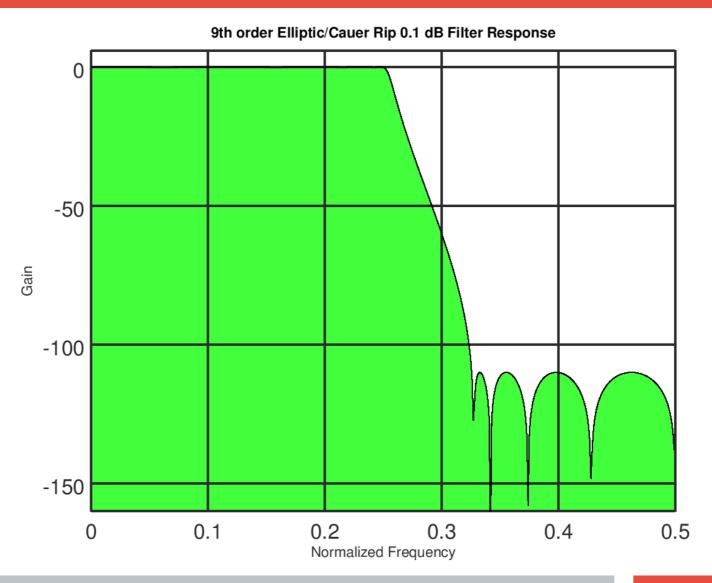
- Bauteile (Widerstände, Kondensator) nur in bestimmten Eigenschaften
- Abh. von Temperatur und Alter

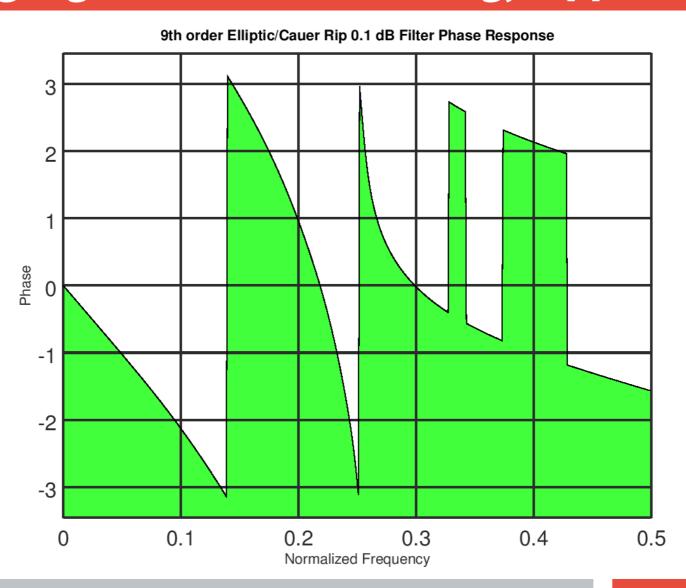

Digital

- Beliebige Werte in Fließkomma-Arithmetik
 - unabhängig von Temperatur oder Alter
- Sofortige Anpassung der Eigenschaften ohne Schaltungsanpassung
- Bis hin zum "Zeichnen" der gewünschten Filterkurve mit der Maus im Spektrum

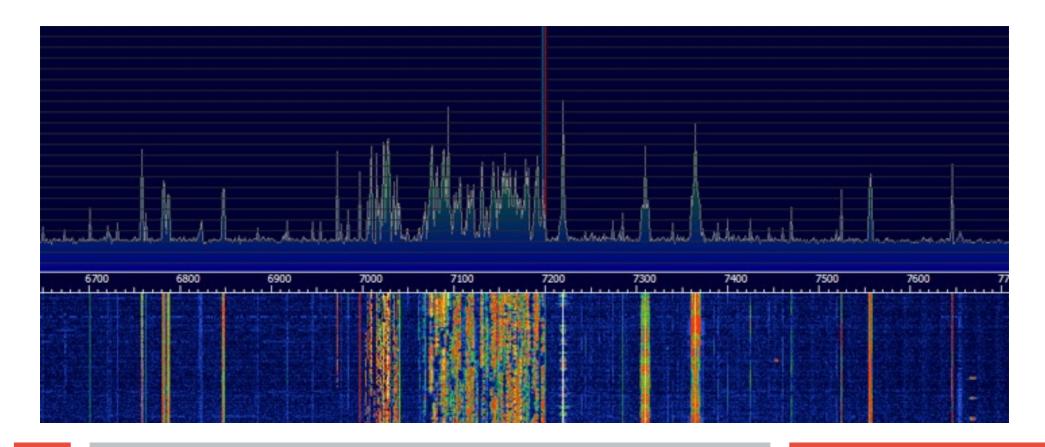

IIR: Elliptisches Cauer Filter 3. Ordnung


FIR: 128 tap Blackman-Harris Filter

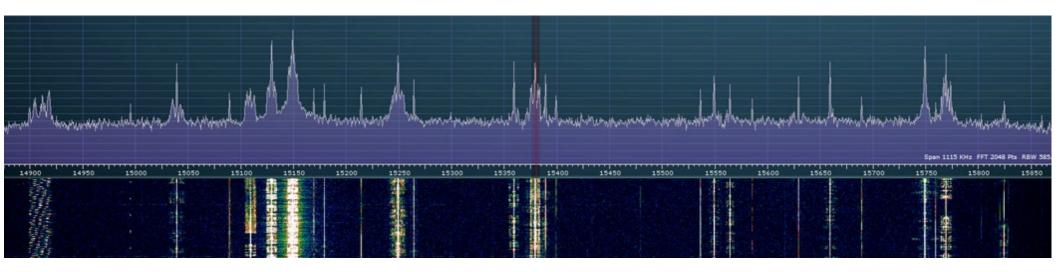

IIR Filter mit verleichbarem Frequenzgang: Chebyshev II - 19. Ordnung


IIR Filter mit verleichbarem Frequenzgang: Phasengang des Chebyshev II - 19. Ordnung

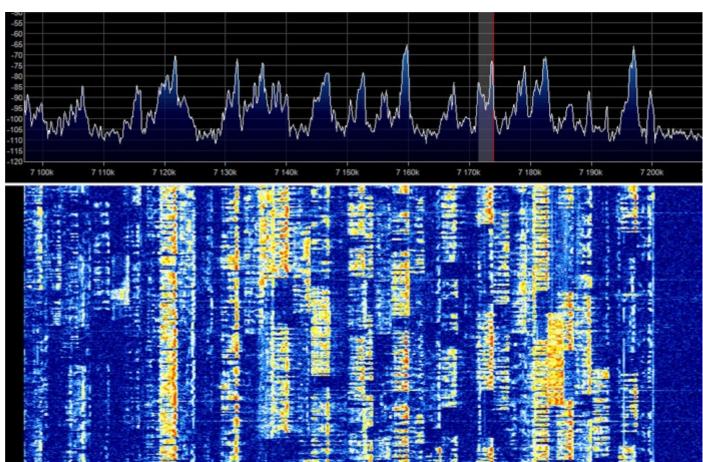
IIR Filter mit verleichbarem Frequenzgang: Cauer - 9. Ordnung mit Ripple ≤ 0.1 dB



IIR Filter mit verleichbarem Frequenzgang: Phasengang d. Cauer - 9. Ordnung, Ripple ≤ 0.1 dB


Unterschied: Spektrum/Wasserfall-Bandbreite (1)

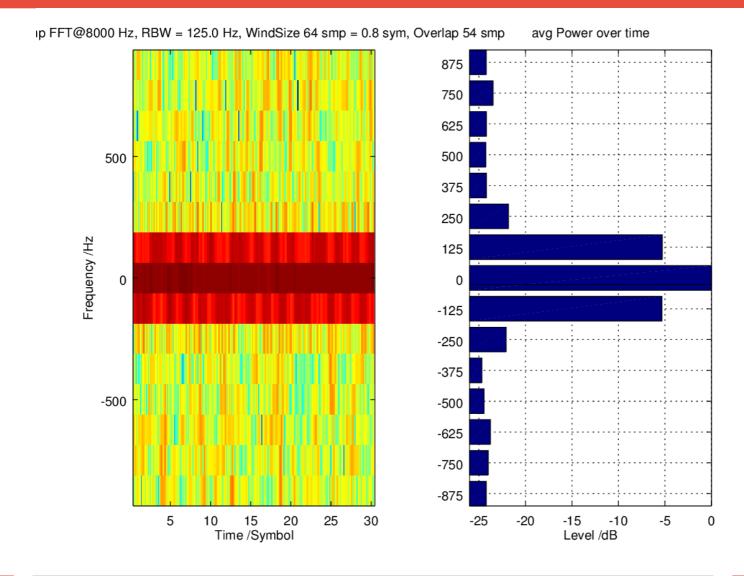
• Bandbreite: ~ 10 kHz vs. >100 kHz bis mehrere MHz


Unterschied: Spektrum/Wasserfall-Bandbreite (2)

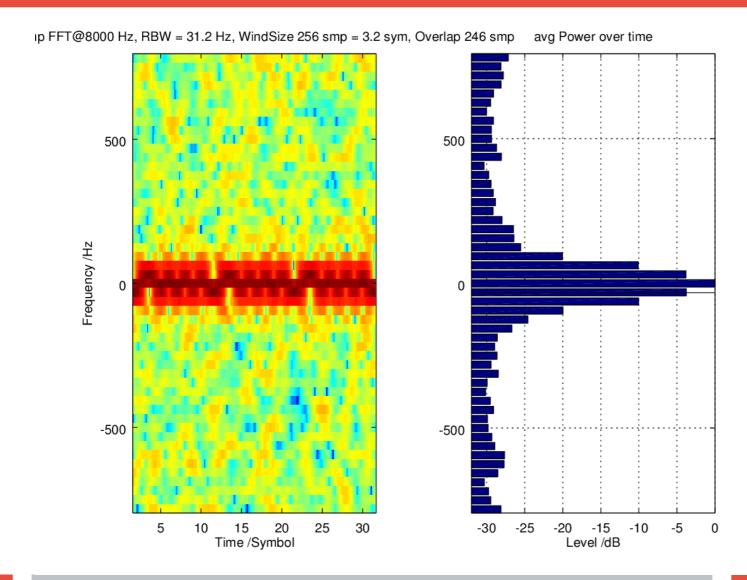
14.8 – 15.8 MHz:

Unterschied: Spektrum/Wasserfall-Bandbreite (3)

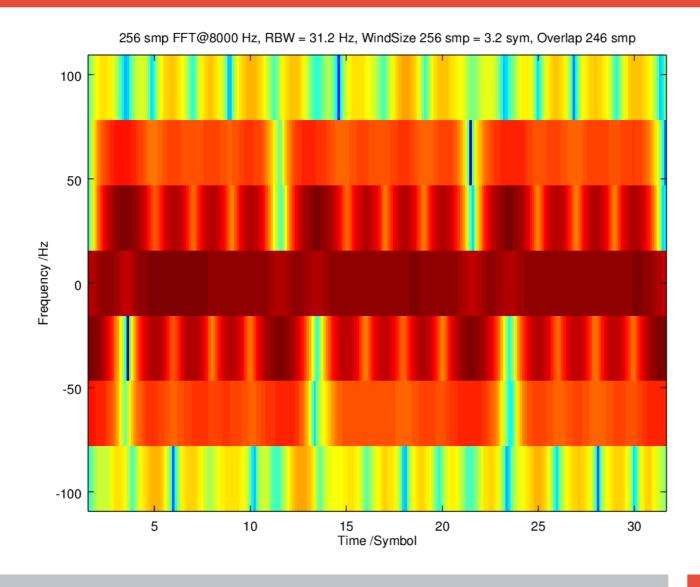
7.1 - 7.2 MHz:

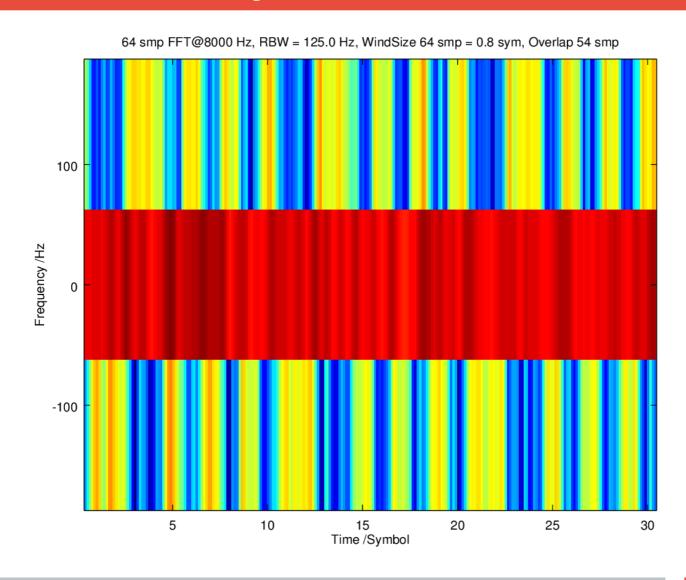


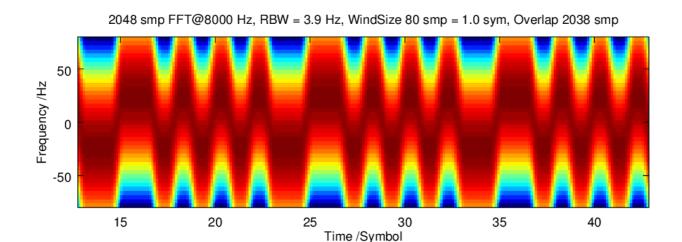
Mischer analog vs. Numerically Controlled Oscillator (NCO)

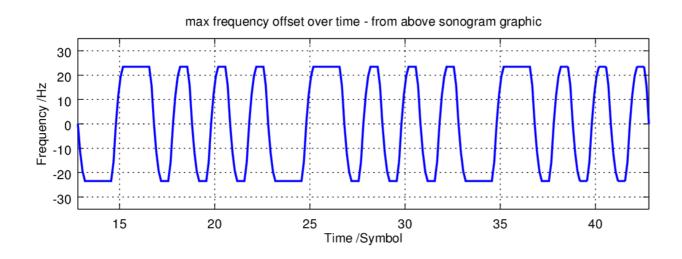

Spektrum / Wasserfall / FFT

- Fast Fourier Transformation (FFT)
 als Spezialfall der Diskreten Fourier Transformation (DFT)
- N Abtastwerte im Zeitbereich → FFT → N komplexe "Bin" im Frequenzbereich
- FFT reduziert Rechenaufwand der DFT von O(N²) auf O(N·log₂(N))
 - N = 1024: Aufwand DFT ≈ 1Mio Multiplikationen. Aufwand FFT = 10240
 - N = 4096: Aufwand DFT ≈ 16Mio Multiplikationen. Aufwand FFT ≈ 50000
- Wasserfall / Sonagramm entsteht durch Anzeige mehrerer FFTs
 - teilweise mit Überlapp der Abtastwerte
- Höhere Frequenzauflösung benötigt größeres N,
 somit mehr Zeit → Verschmierung in Zeit → schlechtere Zeitauflösung

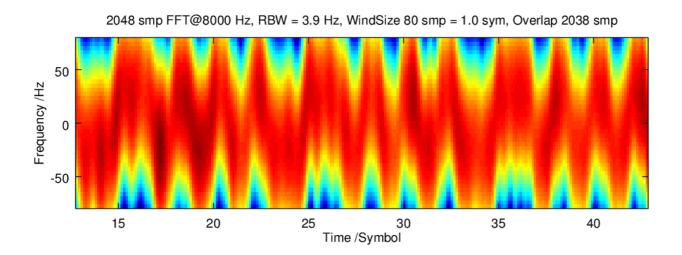

Zeit / Frequenz – Unschärfe (1) FFT Länge N = 64

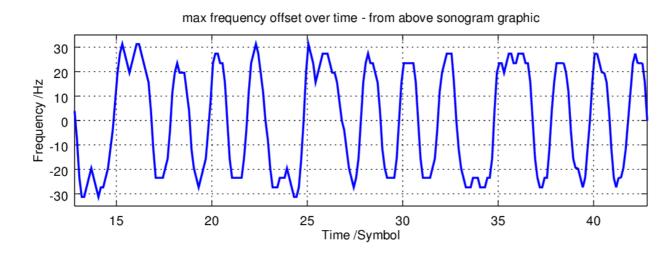

Zeit / Frequenz – Unschärfe (2) FFT Länge N = 256


Zeit / Frequenz – Unschärfe (3) 100 Bd / 50 Hz Shift Minimum $\triangle f$ 50 Hz \Rightarrow N > 160 \Rightarrow N=256 enthält 3 Sym



Zeit / Frequenz – Unschärfe (4) 100 Bd / 50 Hz Shift Maximum N < 1 Sym \rightarrow N<80 \rightarrow \triangle f = 125 Hz

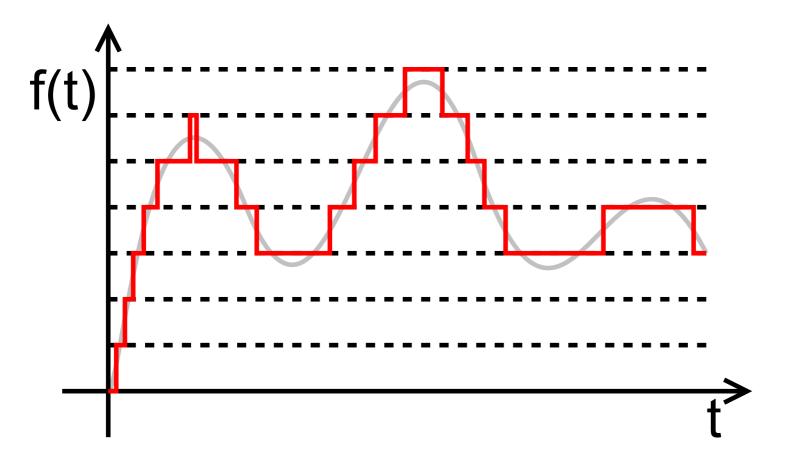



Zeit / Frequenz – Unschärfe (5) 100 Bd / 50 Hz Shift $N=2048 \rightarrow \Delta f$ 4 Hz, Nutzung 80 smp, Zero Padding

Zeit / Frequenz – Unschärfe (6) 100 Bd / 50 Hz Shift N=2048, 80 smp, Zero Padding, mit Rauschen

Wasserfall: Zeichen-Update-Rate des Spektrums

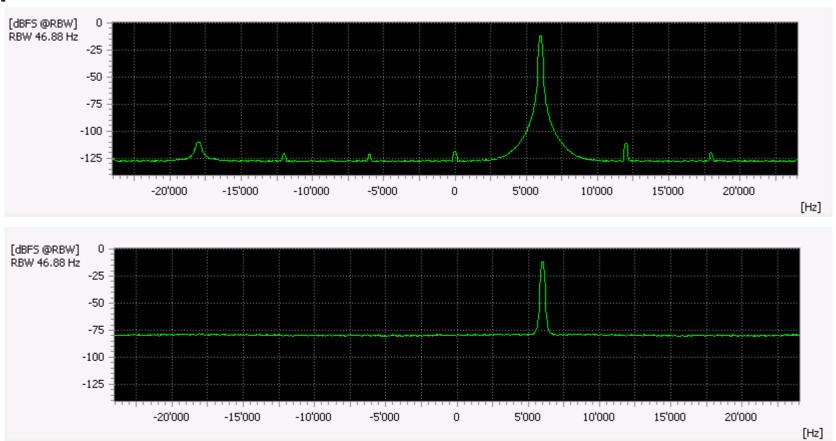
- Menschliches Auge ist träge
- Sehr kurzes Signal (Burst oder Hop)
 im live schnell vorbei-scrollendem Wasserfall kaum entdeckbar
- Reduzierung der Scroll-Geschwindigkeit notwendig
 - ohne Reduzierung der Zeitauflösung?
 - → Detektor-Funktion, z.B. max(), zur Zusammenfassung, so dass alle Abtastwerte lückenlos in die FFTs für den Wasserfall übernommen werden


Unterschied: A/D Wandler (ADC) Dynamik

• Beschränkung "Dynamik@Abtastrate" durch Bittiefe:

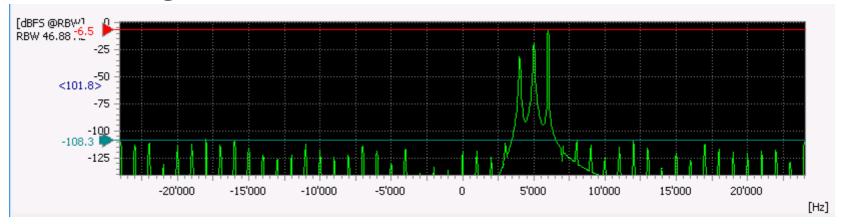
8 Bit	49 dB	16 Bit	98 dB
10 Bit	61 dB	18 Bit	110 dB
12 Bit	74 dB	24 Bit Mantisse (32 Bit Float)	146 dB
14 Bit	85 dB	53 Bit Mantisse (64 Bit Double)	320 dB

- 24/53 Bit: Grenzen der Fließkomma-Arithmetik der CPU (FPU / SSE2)
- Abtastrate. Beachte: Prozessgewinn
- Effective Number of Bits (ENOB)


Bittiefe / Quantisierung der Spannungsgröße

© Petr. Adamek, Rbj, de.wikipedia

Quantisierung und Rauschen ADC sieht kein Umgebungsrauschen


 modulierte Signale (200 Bd PSK) → Rauschflur abh. von Bittiefe Beispiel mit 16 Bit und 8 Bit:

Quantisierungseffekte

- → Dithering / Rauschformung
- Quantisierungsfehler kann "Muster" des Eingangssignals "annehmen". Annahme: Sinus-Träger.
 - → Quantisierungsrauschen spektral NICHT weiß (flach)!

Beispiel mit 3 Trägern:

Rauschformung "noise shaping" addiert Rauschen zum ADC Rauschen auf niedrigstem Bit verdeckt die nicht existenten Träger

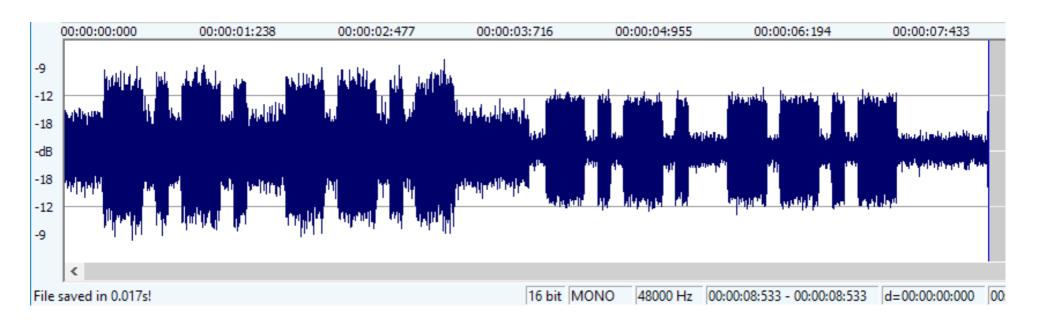
Unterschied: Prozessgewinn – durch Bandbegrenzung

Prozessgewinn:

= 10 · log10(HoheAbtastrate / NiedrigeAbtastrate) in dB

= $10 \cdot log10$ (Dezimationsfaktor) in dB

Dezimationsfaktor	Prozessgewinn	
2	3 dB	
4	6 dB	
8	9 dB	
16	12 dB	
32	15 dB	

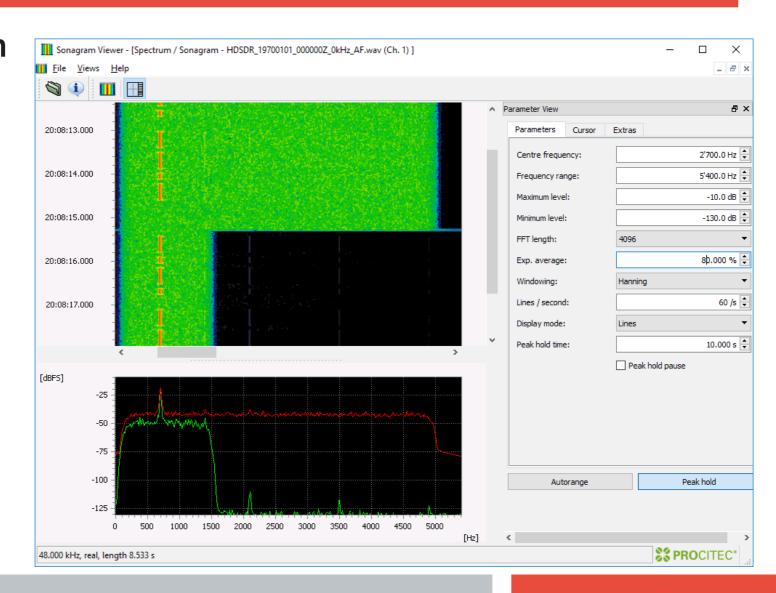

ADC @ 66 MHz → 12 kHz
 enspricht Dezimation um Faktor 5500: Prozessgewinn +37 dB

Dynamik, Prozessgewinn und SNR (1)

- Dynamik und SNR Betrachtung:
 - a) im Zeitsignal über Spannung des Summensignals
 - b) im Spektrum über die Pegel
- Stör + Rauschleistung wird durch Wegfilterung von uninteressantem Band deutlich reduziert
 - → betrachtet man das Summensignal im Zeitbereich (z.B. CW) wird somit das SNR erhöht
 - → betrachtet man das Spektrum im Frequenzbereich ist das SNR gleichbleibend!

Dynamik, Prozessgewinn und SNR (2)

CW Zeitsignal über Spannung des Summensignals:



oben: Rauschpegel von 5 kHz Filter auf 1.5 kHz

Dynamik, Prozessgewinn und SNR (3)

b) im Spektrum über die Pegel

FFT bewirkt ebenfalls Prozessgewinn

Unterschied: Oszillator/VFO vs. NCO

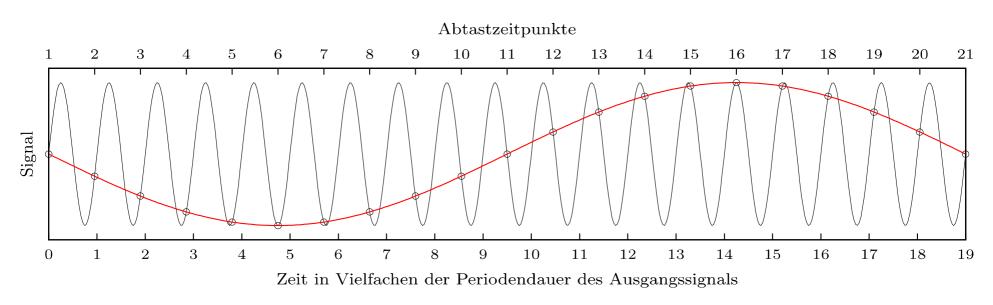
- Reinheit des Oszillators für geringes Phasenrauschen
- Numerically Controlled Oscillator (NCO) benötigt Sin() / Cos()
- 32 Bit Float mit 24 Bit Mantisse bzw.
 64 Bit Double mit 53 Bit Mantisse
- Mehr Bits rechenintensiv → Optimierungen mittels Tabellen
 → zusätzliches Phasenrauschen!
- "Software" Oszillator, z.B. in FPGA oder ASIC:
 Genauigkeit der Frequenz: einzelne Hz bis mehrere kHz

Unterschied: NCO

- Elimination der "Fließkomma" Multiplikation
 - verbunden mit Genauigkeits-Verlust,

wenn: Mischerfrequenz = ± Abtastrate / 4

Phase in Grad (deg)	0°	90°	180°	270° / -90°
Sinus	0	1	0	-1
Kosinus	1	0	-1	0

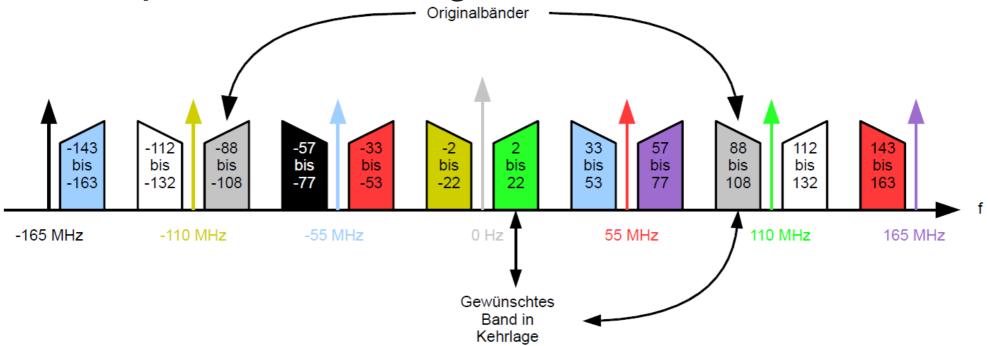

- Komplexe Zahlen (I/Q) mit Software
- Mischen mit komplexem Träger → KEINE Mischprodukte entspricht verlustloser Rotation in die komplexe Ebene → ominöse negative Frequenzen

Unterschied: Anti-Alias / Dezimations - Filter

- Herkömmliche Hardware: ausreichende Vorselektion und Bandfilterung in der ZF – vor anschließendem Heruntermischen in Audio Bereich
- Aliasing bei SDR: vor der Abtastung (wie herkömmlich)
 - + vor der Dezimierung der Abtastrate
- Verschiedene AA-Filter vor der Dezimation der Abtastrate: i.d.R. FIR Filter, Halbband-Filterketten, CIC (Cascaded Integrator Comb)

Aliasing: Faltung / Fehlinterpretation

Signal mit hoher Frequenz wird – aufgrund zu niedriger Abtastrate – fehlinterpretiert:



© mrtz, Creative Commons, de.wikipedia

Eindeutige Interpretation > Nyquist

Effektive Filter – eindeutig auf Vielfache von Halber Abtastrate

→ Bandpass - Unterabtastung

© G², Creative Commons, Wikipedia

Unterschied: Schnittstellen

Herkömmliche Hardware:
 Antenne, Mikrofon, PTT, Audio, CAT

• SDR Hardware:
Antenne, USB oder Netzwerk

Protokollbeschreibung:
 CAT und USB / Netzwerk

Spezifische Schnittstellen

- Unterstützung (DC-Bias) für Vorverstärker
- Pins zur Ansteuerung externer Vorselektion
- Rotorsteuerung
- Virtuelle Soundkarte

- Virtuelle serielle (CAT) Schnittstelle
- USB-IP Konverter Software für Zugriff auf "entfernte" Empfänger

Unterschied: Remote Bedienung über Internet

 Bedienung über Web Browser http://www.websdr.org/

Besonders breitbandiges WebSDR von Pieter-Tjerk de Boer,
 PA3FWM

http://websdr.ewi.utwente.nl:8901/

- Ähnliche Plattform OpenWebRx http://sdr.hu/
- Übertragung von demodulierter Audio
 - + breitbandige Spektraldaten

Unterschied: Panorama Spektrum / Wasserfall

- Erfassung von Bandbelegung sowie jeweiliger Modulation mit einem Blick
- Display vs. Bildschirmgröße
- Frequenz-Einstellung mit einfachem Mausklick anstelle langsamem "Kurbeln"
- Frequenzsweep bzw. Ultra-Breitband Spektrum, z.B. über 50 MHz, bei manchen Direkt-Abtastern parallel zum Empfang
- Kombination von SDR mit herkömmlichem Empfänger mittels Synchronisierung, z.B. per OmniRig, über CAT

Unterschied: Automatische Frequenzsteuerung - Satelliten

- Auch für herkömmliche Hardware mittels CAT
- Steuerung durch DigiMode Software, die die Frequenzen des jeweiligen DigiModes kennt

Unterschied: Automatische Frequenzsteuerung - Satelliten

 Besonders interessant: niedrigfligende (Low-Orbit) nicht-geo-stationären Satelliten, wie z.B. NOAA-Wettersatelliten auf 137.5 MHz, die nur ~ 15 min sichtbar sind

→ Satelliten Vorhersage Programme, z.B. Orbitron, SatPC32, WxTrack, ...

Limitation: Latenz / Verzögerung

- Software sehr oft im Hintertreffen
- IIR Filter mit geringerer Latenz gegen FIR Filter
- Software meist mit FIR Filtern
 Auswahl: geringe Latenz, steile Filterflanken oder Mittelweg
- Pufferung auf Netzwerk und Sound Blockgrößen 512 Samples @ 48 kHz sind 10.6 ms zu kleine Blöcke führen ggf. zu Audio Aussetzern oder Knacksern
- Professionelle Soundkarten / APIs: ASIO, DirectSound, WASAPI unter Windows, JACK unter Linux

Limitation: Audio Aussetzer zu DigiMode SW

Abweichung der Abtastrate über Schräglauf eines Wetter-Faxes

• Einfach korrigierbar für herkömmliche Hardware, da Abtastung erst an Soundkarte, die gleichzeitig Schnittstelle zur Fax-Software ist

• SDR Hardware ist schwierig durch 2 unahängige Taktgeber: SDR Takt und Soundkarte

- Problem auch mit virtuellen Soundkarten wie Virtual Audio Cable (VAC) oder VB-Audio Virtual Audio Device (VB-Cable)
- Wunsch: takt-unabhängige digitale Schnittstelle zwischen SDR und DigiMode/Fax Software, z.B. über TCP

Unterschied: Aufbewahrung / Archivierung

herkömmliche Hardware: Audio Aufzeichnung

SDR Hardware:

- einstellbare Bandbreite: mehrere Sender
- Speicherung vor Demodulation
 - erlaubt nachträgliche Frequenzkorrektur beim Anhören
- Zukunftssicher mit I/Q als "stereo" WAV Datei Unterstützung durch versch. Software
- Ähnlich programmierbarem Video-Rekorder

Unterschied: Multi-RX

- SDR: Empfang mehrerer Sender / Bänder gleichzeitig
 - innerhalb SDR Bandbreite
- Spezielle SDR unterstützen mehrere Bänder per Hardware
- Hörer kann selten belegte Frequenzen "gleichzeitig" hören, angenehmer mit Squelch
- Digitale Modi: erfordern keine direkte Aufmerksamkeit Schnelleres Lesen mit Auge statt Ohr
- Automatisches Hochladen von Empfangsbericht (Bandüberwachung) ins Internet

Unterschied: Synchronisierung

- Herkömmlich: 10 MHz Referenz an mehrere Empfänger gleichen Modells
- Für SDR ist 10 MHz Referenz nicht ausreichend: die Datenübertragung über USB/Netzwerk sowie Multi-Tasking im PC sind ziemlich asynchron
- Synchronisierung anhand bekannter Signaldaten in Software
- Makierung der Daten mit Meta-Informationen,
 z.B. PPS Sekundenpuls

Unterschied: Zukunftssicherheit (1)

- Treiberlos: bis 192 kHz USB-Sound für I/Q
 + USB-HID zur Steuerung
- Oft spezielle Treiber für Steuerung und Signaldaten :- (
- Für welche Betriebssystem-Versionen unterstützt / liefert der Hersteller die Treiber ?
- Ist Quellcode für "Treiber" zugänglich? Kann Community diese pflegen?
- Wie kompatibel ist USB-2 zu USB-3?

Unterschied: Zukunftssicherheit (2)

- Treiberlos: Netzwerk
- Kabelgebunden vs. WiFi ggf. WiFi ab eigenem Raspberry-Pi
- Ist Protokoll-Beschreibung für "Treiber" zugänglich? Kann Community diese pflegen?
- Aufkommender Standard: VITA 49 Radio Transport (VRT) für Streaming
 Version 2 auch für Steuerung

"Software Defined Radio" - Modewort "SDR"

 Funktionsumfang der jeweiligen SDR-Hardware und Software kann sehr unterschiedlich ausfallen

Wichtige Aspekte zur Bewertung:

- Qualität und Eigenschaften der Hardware
- Unterstützung von Betriebssystem(en) und Versionen
- Unterstützung von SDR-Software
 - mit dem jeweils gebotenem Funktionsumfang
- Zukunftssicherheit

ENDE

und

Danke für die Aufmerksamkeit!