
2025/11/05 1/3 Testing, Reproducibility and Random Numbers

coding spirit - https://codingspirit.de/dokuwiki/

Testing, Reproducibility and Random
Numbers

General

Software needs testing .. and many tests can be automized with unittests - or integration tests.
The program/test should be reproducible to allow (later) debugging/fixing.

Crash early!

Especially when the program or it's results must be reliable, crashing early might be advised!
In this case, additional checks should be enforced and executed. Note, that the C assert() is
removed in non-debug compiled binaries.

Besides executing explicitly programmed checks, there are also other possibilities:

setup signal handler, e.g. segmentation fault (SIGSEGV)
setup floating point traps, see Numeric / Math / Linear Algebra
compile with automatic checks

see https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_macros.html for
_GLIBCXX_DEBUG
_GLIBCXX_ASSERTIONS
_GLIBCXX_SANITIZE_VECTOR

see https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html for
sanitizers like the prominent AddressSanitizer 'ASan'
stack-protector
and others

A welcomed side effect of crashing early:
the stack trace and the visible variable contents might reveal the initial cause of the problem
- at least with a much higher probability than after having continued and covered the problem.

Core-Dumps

A core-dump / minidump mechanism might be of interest.
For tracking very rare or specific errors, this mechanism might also get delivered to customers.

Pseudo Random Number Generators (PRNG)

For tests, a huge amount of 'random' numbers can be generated, from one seed-number.
There's no need to have a cryptographically safe PRNG.

https://codingspirit.de/dokuwiki/doku.php?id=development:numeric_math
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_macros.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


Last update: 2023/01/08 development:testing_and_prng https://codingspirit.de/dokuwiki/doku.php?id=development:testing_and_prng

https://codingspirit.de/dokuwiki/ Printed on 2025/11/05

Test with defined seed-numbers or simply log/save the used seed number.

Algorithms / Libraries

Properties

size of the seed or state
small size is of interest to use one PRNG per thread

quick initialization from seed
speed, for producing next number
period size - until the sequence repeats

Linear congruential generator (LCG)

LCG is perhaps the simplest (and fastest) algorithm with a small seed; see
https://en.wikipedia.org/wiki/Linear_congruential_generator

Fast skipping might be of interest; see
https://www.nayuki.io/page/fast-skipping-in-a-linear-congruential-generator

Xorshift

Also a very fast PRNG. Here some links

https://en.wikipedia.org/wiki/Xorshift
xoshiro / xoroshiro generators
http://pracrand.sourceforge.net/
https://sourceforge.net/projects/gjrand/
http://simul.iro.umontreal.ca/testu01/tu01.html

Mersenne Twister

This PRNG got hyped in the C++ community for it's ridiculously huge period size - but has a big seed
size and it's initialization isn't the fastest. IMHO, in most applications, the huge period size isn't
necessary.

Anyway, here a link to a SIMD-oriented implementation:
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/SFMT/index.html

Other Links

PCG - comparison of Mersenne Twister, Arc4, ..
https://www.pcg-random.org/

64 bit version of Mersenne Twister
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt64.html

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://www.nayuki.io/page/fast-skipping-in-a-linear-congruential-generator
https://en.wikipedia.org/wiki/Xorshift
https://prng.di.unimi.it/
http://pracrand.sourceforge.net/
https://sourceforge.net/projects/gjrand/
http://simul.iro.umontreal.ca/testu01/tu01.html
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/SFMT/index.html
https://www.pcg-random.org/
http://www.math.sci.hiroshima-u.ac.jp/m-mat/MT/emt64.html


2025/11/05 3/3 Testing, Reproducibility and Random Numbers

coding spirit - https://codingspirit.de/dokuwiki/

https://www.reddit.com/r/programming/comments/2momvr/pcg_a_family_of_better_
random_number_generators/
https://github.com/imneme/pcg-cpp

https://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
CppCon 2016: Cheinan Marks “I Just Wanted a Random Integer!

https://www.youtube.com/watch?v=4_QO1nm7uJs
CppCon 2016: Walter E. Brown “What C++ Programmers Need to Know about Header
<random>”

https://www.youtube.com/watch?v=6DPkyvkMkk8
CppCon 2022: Roth Michaels “Fast, High-Quality Pseudo-Random Numbers for Non-
Cryptographers”

https://www.youtube.com/watch?v=I5UY3yb0128
https://github.com/CppCon/CppCon2022/blob/main/Presentations/Fast-High-Quality-Pseud
o-Random-Numbers-CPPCon2022-Roth-Michaels.pdf

Vectorized (SIMD) generation
https://lemire.me/blog/2018/07/23/are-vectorized-random-number-generators-actually-us
eful/
https://forum.juce.com/t/fast-simd-based-random-number-generator-whether-and-how-to-
vectorize-random-nextint/44430

Github
https://github.com/imneme/pcg-cpp
https://github.com/DEShawResearch/random123
https://github.com/Reputeless/Xoshiro-cpp

From:
https://codingspirit.de/dokuwiki/ - coding spirit

Permanent link:
https://codingspirit.de/dokuwiki/doku.php?id=development:testing_and_prng

Last update: 2023/01/08

https://www.reddit.com/r/programming/comments/2momvr/pcg_a_family_of_better_random_number_generators/
https://www.reddit.com/r/programming/comments/2momvr/pcg_a_family_of_better_random_number_generators/
https://github.com/imneme/pcg-cpp
https://en.cppreference.com/w/cpp/numeric/random/uniform_int_distribution
https://www.youtube.com/watch?v=4_QO1nm7uJs
https://www.youtube.com/watch?v=6DPkyvkMkk8
https://www.youtube.com/watch?v=I5UY3yb0128
https://github.com/CppCon/CppCon2022/blob/main/Presentations/Fast-High-Quality-Pseudo-Random-Numbers-CPPCon2022-Roth-Michaels.pdf
https://github.com/CppCon/CppCon2022/blob/main/Presentations/Fast-High-Quality-Pseudo-Random-Numbers-CPPCon2022-Roth-Michaels.pdf
https://lemire.me/blog/2018/07/23/are-vectorized-random-number-generators-actually-useful/
https://lemire.me/blog/2018/07/23/are-vectorized-random-number-generators-actually-useful/
https://forum.juce.com/t/fast-simd-based-random-number-generator-whether-and-how-to-vectorize-random-nextint/44430
https://forum.juce.com/t/fast-simd-based-random-number-generator-whether-and-how-to-vectorize-random-nextint/44430
https://github.com/imneme/pcg-cpp
https://github.com/DEShawResearch/random123
https://github.com/Reputeless/Xoshiro-cpp
https://codingspirit.de/dokuwiki/
https://codingspirit.de/dokuwiki/doku.php?id=development:testing_and_prng

	Testing, Reproducibility and Random Numbers
	General
	Crash early!
	Core-Dumps
	Pseudo Random Number Generators (PRNG)
	Algorithms / Libraries
	Properties
	Linear congruential generator (LCG)
	Xorshift
	Mersenne Twister
	Other Links




